Malware Detection and Classification using Logistic Regression

In this post, an approach to detecting malware using machine learning is presented. System call activity is processed and analyzed by a classification model to detect the presence of malicious applications.

Continue reading “Malware Detection and Classification using Logistic Regression”

Advertisements

Introducing CMoerae: A Cryptocurrency Dashboard Application

CMoerae is a cryptocurrency dashboard application. The dashboard displays predictions and market information for 20 of the most popular cryptocurrencies. CMoerae uses machine learning to make up-to-date predictions based on recent market data. The model is similar to that of my Twitter bot RoboInsights.

Continue reading “Introducing CMoerae: A Cryptocurrency Dashboard Application”

A Statistical Analysis of Facial Attractiveness

An intermediate activation volume produced by a convolutional neural network predicting the attractiveness of a person.


Does beauty truly lie in the eye of its beholder? This chapter explores the complex array of factors that influence facial attractiveness to answer that question or at least to understand it better.

Continue reading “A Statistical Analysis of Facial Attractiveness”

Binary Classification with Artificial Neural Networks using Python and TensorFlow

This post is an introduction to using the TFANN module for classification problems. The TFANN module is available here on GitHub. The name TFANN is an abbreviation for TensorFlow Artificial Neural Network. TensorFlow is an open-source library for data flow programming. Due to the nature of computational graphs, using TensorFlow can be challenging at times. The TFANN module provides several classes that allow for interaction with the TensorFlow API using familiar object-oriented programming paradigms.

Continue reading “Binary Classification with Artificial Neural Networks using Python and TensorFlow”

Cryptocurrency Price Prediction Using Deep Learning in TensorFlow

In this post, deep learning neural networks are applied to the problem of predicting Bitcoin and other cryptocurrency prices. A chartist approach is taken to predict future values; the network makes predictions based on historical trends in the price and trading volume. A 1D convolutional neural network (CNN) transforms an input volume consisting of historical prices from several major cryptocurrencies into future price information.

Continue reading “Cryptocurrency Price Prediction Using Deep Learning in TensorFlow”

Deep Learning OCR using TensorFlow and Python

In this post, deep learning neural networks are applied to the problem of optical character recognition (OCR) using Python and TensorFlow. This post makes use of TensorFlow and the convolutional neural network class available in the TFANN module. The full source code from this post is available here.

Continue reading “Deep Learning OCR using TensorFlow and Python”

Introducing: Deep Learning Deathmatch TV

This post is made in introduction of a new YouTube series titled Deep Learning Deathmatch. In this series, a deep learning based AI that relies only on visual input is pitted against video game bosses. The resulting battle is recorded, edited, and compiled into a video. In the first video in the series, the AI fights the Oasis boss in Path of Exile.

More videos are available on my YouTube channel.