Datasets containing nonhomogenous groups of samples present a challenge to linear models. In particular, such datasets violate the assumption that there is a linear relationship between the independent and dependent variables. If the data is grouped into distinct clusters, linear models may predict responses that fall in between the clusters. These predictions can be quite far from the targets depending on how the data is structured. In this post, a method is presented for automatically handling nonhomogenous datasets using linear models.

## Decorrelating Features using the Gram-Schmidt Process

A problem that frequently arises when applying linear models is that of multicollinearity. The term **multicollinearity** describes the phenomenon where one or more features in the data matrix can be accurately predicted using a linear model involving others of the features. The consequences of multicollinearity include numerical instability due to ill-conditioning, and difficulty in interpreting the regression coefficients. An approach to decorrelate features is presented using the Gram-Schmidt process.