Deep Learning OCR using TensorFlow and Python

In this post, deep learning neural networks are applied to the problem of optical character recognition (OCR) using Python and TensorFlow. This post makes use of TensorFlow and the convolutional neural network class available in the TFANN module. The full source code from this post is available here.

Continue reading “Deep Learning OCR using TensorFlow and Python”

Advertisements

Introducing: Deep Learning Deathmatch TV

This post is made in introduction of a new YouTube series titled Deep Learning Deathmatch. In this series, a deep learning based AI that relies only on visual input is pitted against video game bosses. The resulting battle is recorded, edited, and compiled into a video. In the first video in the series, the AI fights the Oasis boss in Path of Exile.

More videos are available on my YouTube channel.

PoE AI Part 5: Real-Time Obstacle and Enemy Detection using CNNs in TensorFlow

This post is the fifth part of a series on creating an AI for the game Path of Exile © (PoE).

  1. A Deep Learning Based AI for Path of Exile: A Series
  2. Calibrating a Projection Matrix for Path of Exile
  3. PoE AI Part 3: Movement and Navigation
  4. PoE AI Part 4: Real-Time Screen Capture and Plumbing
  5. AI Plays Path of Exile Part 5: Real-Time Obstacle and Enemy Detection using CNNs in TensorFlow

As discussed in the first post of this series, the AI program takes a screenshot of the game and uses it to form predictions that are then used to update its internal state. In this post, methods for classifying and organizing information from visual input of the game screen is discussed. I have made the source code for this project available on my GitHub. Enjoy!

Continue reading “PoE AI Part 5: Real-Time Obstacle and Enemy Detection using CNNs in TensorFlow”

PoE AI Part 4: Real-time Screen Capture and Plumbing

This post is the forth part of a series on creating an AI for the game Path of Exile © (PoE).

  1. A Deep Learning Based AI for Path of Exile: A Series
  2. Calibrating a Projection Matrix for Path of Exile
  3. PoE AI Part 3: Movement and Navigation
  4. PoE AI Part 4: Real-Time Screen Capture and Plumbing
  5. AI Plays Path of Exile Part 5: Real-Time Obstacle and Enemy Detection using CNNs in TensorFlow

As discussed in the first post of this series, the AI program takes a screenshot of the game and uses it to form predictions that are then used to update its internal state. In this post, efficient methods for capturing images of the game screen are explored.

Continue reading “PoE AI Part 4: Real-time Screen Capture and Plumbing”

A Deep Learning Based AI for Path of Exile: A Series

This post is the first in a series on creating an AI for the game Path of Exile based on deep learning and other machine learning techniques. A list of posts in this series follows.

  1. A Deep Learning Based AI for Path of Exile: A Series
  2. Calibrating a Projection Matrix for Path of Exile
  3. PoE AI Part 3: Movement and Navigation
  4. PoE AI Part 4: Real-Time Screen Capture and Plumbing
  5. AI Plays Path of Exile Part 5: Real-Time Obstacle and Enemy Detection using CNNs in TensorFlow

The goal of the project is to create an AI that operates based on visual input, is able to navigate levels successfully, can defend itself, and of course to have fun and learn something in the process.

Continue reading “A Deep Learning Based AI for Path of Exile: A Series”

Visualizing Neural Network Performance on High-Dimensional Data

This post is part of a series on artificial neural networks (ANN) in TensorFlow and Python.

  1. Stock Market Prediction Using Multi-Layer Perceptrons With TensorFlow
  2. Stock Market Prediction in Python Part 2
  3. Visualizing Neural Network Performance on High-Dimensional Data
  4. Image Classification Using Convolutional Neural Networks in TensorFlow

This post presents a short script that plots neural network performance on high-dimensional binary data using MatPlotLib in Python. Binary vectors, or vectors only containing 0 and 1, can be useful for representing categorical data or discrete phenomena. The code in this post is available on GitHub.

Continue reading “Visualizing Neural Network Performance on High-Dimensional Data”